【機械学習】決定木(decision tree)について。

教師あり学習の一つである決定木(desicion tree)について勉強したことを書いていきます。

決定木の特徴

決定木の特徴は、以下のようになります。

  • フローチャートのようなもので、If-then ルールの集合で出力を決定する。
  • Eager learning の一つで、事前の学習が必要だが、一旦学習すれば利用時は高速である。
  • 人間にとって理解しやすい情報抽出が行われる。

決定木の学習

決定木では、(例えば2クラス分類の場合)正例と負例が混ざっている状況を「乱雑である」と表現します。そして、学習の際は、どんな条件で分割すると正例と負例が綺麗に分かれて整理され、乱雑さを小さくできるかを考えます。で、この乱雑さを定量化したものをエントロピーといい、このエントロピーを最小化するように学習していきます。

エントロピーは、正例の場合を \(P_+\)  負例の場合を \(P_-\) と書き、

$$Entropy = -P_+log{2}P_+-P_-log{2}P_-$$

と定義されます。

正例と負例が綺麗に分かれている(pが0や1に近い)ほど、エントロピーの値は0に近づき、逆に乱雑(pが0.5に近い)であるほど、エントロピーの値は1に近づきます。

関連記事

【Weka】欠損データを自動的に補完するフィルタを使ってみた。

機械学習で用いるデータについてです。データは完璧なことに越したことはないが、通常は、ある属性の値が入

記事を読む

【深層学習】 TensorFlow と Keras をインストールする【Python】

今回は、Google Colaboratory 上で、深層学習(DeepLearning)フレームワ

記事を読む

【転移学習】学習済みVGG16 による転移学習を行う方法【PyTorch】

今回は、PyTorch を使って、学習済みのモデル VGG16 を用いて転移学習をしてみました。

記事を読む

【Weka】フリーの機械学習ソフトをインストールする方法。

Weka は、GUIで使えるフリーの機械学習ソフトです。 https://ja.wikiped

記事を読む

【機械学習・手法比較】決定木とナイーブベイズを比較してみた。

同じデータを使って、教師有り機械学習手法の 決定木(Decision Tree)とナイーブベイズ(N

記事を読む

【Chainer】手書き数字認識をしてみた【Deep Learning】

Chainerを用いて、ニューラルネットワークを構築し、手書き数字認識を行ったときのメモです。

記事を読む

【機械学習】パーセプトロン(Perceptron)について。

パーセプトロンは、教師あり学習の中でも、入出力モデルベース(eager learning:働き者の学

記事を読む

【TensorFlow】GPUを認識しない時の対処方法【Python】

TensorFlow で GPU を認識させようとしたときにハマってしまったので、その対処方法のメモ

記事を読む

【Weka】ARFF 形式から CSV 形式に簡単に変換する方法。

フリーのデータマイニングツールである WEKA では、ARFF 形式と CSV 形式のデータを読み込

記事を読む

【PyTorch】ニューラルネットワークを構築する方法【NN】

今回は、PyTorch を使って、ニューラルネットワーク(NN)を構築したときのメモです。 フ

記事を読む

Message

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

【転移学習】学習済みVGG16 による転移学習を行う方法【PyTorch】

今回は、PyTorch を使って、学習済みのモデル VGG16 を用い

【PyTorch】畳込みニューラルネットワークを構築する方法【CNN】

今回は、PyTorch を使って畳込みニューラルネットワーク(CNN)

【PyTorch】ニューラルネットワークを構築する方法【NN】

今回は、PyTorch を使って、ニューラルネットワーク(NN)を構築

【OpenCV】検出した顔画像部分を切り出す方法【Python】

OpenCV を使って、Python で画像の中から顔部分を切り出した

【Fashion-MNIST】ファッションアイテムのデータセットを使ってみた【TensorFlow】

今回は、機械学習用に公開されているデータセットの1つである「Fashi

→もっと見る

PAGE TOP ↑