【機械学習】決定木(decision tree)について。
公開日:
:
機械学習 desicion tree, Entropy, エントロピー, 決定木
教師あり学習の一つである決定木(desicion tree)について勉強したことを書いていきます。
決定木の特徴
決定木の特徴は、以下のようになります。
- フローチャートのようなもので、If-then ルールの集合で出力を決定する。
- Eager learning の一つで、事前の学習が必要だが、一旦学習すれば利用時は高速である。
- 人間にとって理解しやすい情報抽出が行われる。
決定木の学習
決定木では、(例えば2クラス分類の場合)正例と負例が混ざっている状況を「乱雑である」と表現します。そして、学習の際は、どんな条件で分割すると正例と負例が綺麗に分かれて整理され、乱雑さを小さくできるかを考えます。で、この乱雑さを定量化したものをエントロピーといい、このエントロピーを最小化するように学習していきます。
エントロピーは、正例の場合を \(P_+\) 負例の場合を \(P_-\) と書き、
$$Entropy = -P_+log{2}P_+-P_-log{2}P_-$$
と定義されます。
正例と負例が綺麗に分かれている(pが0や1に近い)ほど、エントロピーの値は0に近づき、逆に乱雑(pが0.5に近い)であるほど、エントロピーの値は1に近づきます。
関連記事
-
【機械学習】 scikit-learn で精度・再現率・F値を算出する方法【Python】
今回は、2クラス分類で Python の scikit-learn を使った評価指標である、精度(P
-
【転移学習】学習済みVGG16 による転移学習を行う方法【PyTorch】
今回は、PyTorch を使って、学習済みのモデル VGG16 を用いて転移学習をしてみました。
-
【Weka】フリーの機械学習ソフトをインストールする方法。
Weka は、GUIで使えるフリーの機械学習ソフトです。 https://ja.wikiped
-
【Fashion-MNIST】ファッションアイテムのデータセットを使ってみた【TensorFlow】
今回は、機械学習用に公開されているデータセットの1つである「Fashion-MNIST」について紹介
-
機械学習の手法のまとめ。
機械学習は、「与えられた入出力事例をモデル化する行為」のことで、ディープラーニングなどで注目を集めて
-
【機械学習】パーセプトロン(Perceptron)について。
パーセプトロンは、教師あり学習の中でも、入出力モデルベース(eager learning:働き者の学
-
【Chainer】手書き数字認識をしてみた【Deep Learning】
Chainerを用いて、ニューラルネットワークを構築し、手書き数字認識を行ったときのメモです。
-
【Weka】アソシエーション・ルール(association rule)【機械学習】
フリーの機械学習ツール Weka でアソシエーション・ルール(association rule)を使
-
【TensorFlow】GPUを認識しない時の対処方法【Python】
TensorFlow で GPU を認識させようとしたときにハマってしまったので、その対処方法のメモ
-
【Weka】CSVファイルを読み込んで決定木を実行。
フリーの機械学習ソフト Weka を使って、CSVファイルを読み込んで決定木(Decision Tr