【機械学習】決定木(decision tree)について。

教師あり学習の一つである決定木(desicion tree)について勉強したことを書いていきます。

決定木の特徴

決定木の特徴は、以下のようになります。

  • フローチャートのようなもので、If-then ルールの集合で出力を決定する。
  • Eager learning の一つで、事前の学習が必要だが、一旦学習すれば利用時は高速である。
  • 人間にとって理解しやすい情報抽出が行われる。

決定木の学習

決定木では、(例えば2クラス分類の場合)正例と負例が混ざっている状況を「乱雑である」と表現します。そして、学習の際は、どんな条件で分割すると正例と負例が綺麗に分かれて整理され、乱雑さを小さくできるかを考えます。で、この乱雑さを定量化したものをエントロピーといい、このエントロピーを最小化するように学習していきます。

エントロピーは、正例の場合を \(P_+\)  負例の場合を \(P_-\) と書き、

$$Entropy = -P_+log{2}P_+-P_-log{2}P_-$$

と定義されます。

正例と負例が綺麗に分かれている(pが0や1に近い)ほど、エントロピーの値は0に近づき、逆に乱雑(pが0.5に近い)であるほど、エントロピーの値は1に近づきます。

関連記事

【画像認識】 Google画像検索結果を取得する方法 【google image download】

今回は、深層学習(DeepLearning)で画像認識をするための画像データの収集を、Google画

記事を読む

【機械学習】 scikit-learn で精度・再現率・F値を算出する方法【Python】

今回は、2クラス分類で Python の scikit-learn を使った評価指標である、精度(P

記事を読む

【機械学習】パーセプトロン(Perceptron)について。

パーセプトロンは、教師あり学習の中でも、入出力モデルベース(eager learning:働き者の学

記事を読む

【Weka】欠損データを自動的に補完するフィルタを使ってみた。

機械学習で用いるデータについてです。データは完璧なことに越したことはないが、通常は、ある属性の値が入

記事を読む

【探索】縦型・横型・反復深化法の探索手法の比較。

探索とは、チェスや将棋や囲碁などのゲームをコンピュータがプレイするときに、どの手を指すかを決定するの

記事を読む

【探索】ダイクストラ法・最良優先探索・Aアルゴリズムの比較。

縦型探索や横型探索では、機械的に順序を付け、最小ステップでゴールを目指します。 つまり、

記事を読む

【TensorFlow】GPUを認識しない時の対処方法【Python】

TensorFlow で GPU を認識させようとしたときにハマってしまったので、その対処方法のメモ

記事を読む

【Chainer】手書き数字認識をしてみた【Deep Learning】

Chainerを用いて、ニューラルネットワークを構築し、手書き数字認識を行ったときのメモです。

記事を読む

【Weka】アソシエーション・ルール(association rule)【機械学習】

フリーの機械学習ツール Weka でアソシエーション・ルール(association rule)を使

記事を読む

【深層学習】 TensorFlow と Keras をインストールする【Python】

今回は、Google Colaboratory 上で、深層学習(DeepLearning)フレームワ

記事を読む

Message

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

【TensorFlow】GPUを認識しない時の対処方法【Python】

TensorFlow で GPU を認識させようとしたときにハマってし

【耳コピ】音楽ファイルを楽器ごとに分離する方法【Spleeter:フリー】

今回は、mp3 などの音楽ファイルをボーカル、ベース、ドラムなどの楽器

【Chainer】手書き数字認識をしてみた【Deep Learning】

Chainerを用いて、ニューラルネットワークを構築し、手書き数字認識

【Spyder】引数のあるスクリプトを実行する方法。

Python の統合開発環境(IDE)である Spyder では、簡単

【Anaconda】Prompt 上で Git コマンドを実行する方法。

Anaconda のコマンドプロンプト(Anaconda Prompt

→もっと見る

PAGE TOP ↑