【PyTorch】ニューラルネットワークを構築する方法【NN】

公開日: : 最終更新日:2022/03/17 機械学習 , , , , ,

今回は、PyTorch を使って、ニューラルネットワーク(NN)を構築したときのメモです。

ファッションアイテムの公開データセットである Fashion-MNIST を用いて、ニューラルネットワークを構築し、学習・テストまでを行います。

Fashion-MNIST については、以前の記事にまとめてありますので、もしよければ参考にしてみてください。

【Fashion-MNIST】ファッションアイテムのデータセットを使ってみた【TensorFlow】

動作環境としては、Anaconda の jupyter 上で動かし、CPU の AMD Ryzen 7 を使っています。

Contents

データセットの読み込み

まず、データセットのダウンロードと読み込みを行います。

以下のように、「data」フォルダが作成され、データセットがダウンロードされます。

jupyter 上での出力は以下のようになりました。

ニューラルネットワーク(NN)の入力は、畳込みニューラルネットワークと違って、フラットな形状である必要があるため、

lambda x: x.view(-1)」として、2階テンソルを1階テンソルに変換しています。

lambda」は、「lambda 引数: 返り値」というように定義して使います。

また、「batch_size = 64」として、ミニバッチのサイズを 64 としています。

ミニバッチは、1回の学習・テストに用いるデータの数を指定しています。データはランダムに抽出して使います。

最後の出力は以下のようになり、訓練データ・テストデータのミニバッチのサイズが確認できます。

ニューラルネットワークのモデルを定義・生成

モデルの定義、生成を行い、その構造を出力します。今回は、2層の浅いネットワークとなっています。

モデルの定義は、以下のように行います。

ここではモデルを定義しているだけなので、出力はありません。

次にモデルの生成を行います。

モデルの生成は、以下のように行います。

torch.cuda.is_available()」で GPU が使用可能か確認することができます。「True」が返れば、GPU が使えるということになります。

モデルの構造は、以下のようになりました。

「out_features=10」は、 Fashion-MNIST が10種類あるため、10種類のファッションアイテムを分類するためです。

損失関数と最適化手法の設定

損失関数と最適化手法(オプティマイザー)の設定を行います。

最適化手法には、勾配降下アルゴリズムを用います。

パラメータ更新用の関数を定義

学習時のパラメータを更新する train_step 関数を定義します。

モデル評価用の関数を定義

テストデータを使って評価を行うための test_step 関数を定義します。

早期終了判定を行う関数を定義

早期終了判定を行う EarlyStopping 関数を定義します。

学習

実際に、学習・テストを繰り返し行います。

エポック数が 200 に設定されているため、最大200回繰り返されます。

%%time」とすることで実行時間を計測することができます。

結果、73エポックで終了となりました。

CPU での実行時間は約13分でした。

ちなみに、算出している精度 accuracy は、正解率となります。

精度のグラフ化

エポックごとの損失と精度をグラフ化します。

※横軸の epoc が80を超えていますが、これは一度学習・検証をし直したためです。

参考文献

関連記事

【探索】ダイクストラ法・最良優先探索・Aアルゴリズムの比較。

縦型探索や横型探索では、機械的に順序を付け、最小ステップでゴールを目指します。 つまり、

記事を読む

【Weka】アソシエーション・ルール(association rule)【機械学習】

フリーの機械学習ツール Weka でアソシエーション・ルール(association rule)を使

記事を読む

【深層学習】 TensorFlow と Keras をインストールする【Python】

今回は、Google Colaboratory 上で、深層学習(DeepLearning)フレームワ

記事を読む

【機械学習】決定木(decision tree)について。

教師あり学習の一つである決定木(desicion tree)について勉強したことを書いていきます。

記事を読む

【Weka】欠損データを自動的に補完するフィルタを使ってみた。

機械学習で用いるデータについてです。データは完璧なことに越したことはないが、通常は、ある属性の値が入

記事を読む

【TensorFlow】GPUを認識しない時の対処方法【Python】

TensorFlow で GPU を認識させようとしたときにハマってしまったので、その対処方法のメモ

記事を読む

【Weka】フリーの機械学習ソフトをインストールする方法。

Weka は、GUIで使えるフリーの機械学習ソフトです。 https://ja.wikiped

記事を読む

【転移学習】学習済みVGG16 による転移学習を行う方法【PyTorch】

今回は、PyTorch を使って、学習済みのモデル VGG16 を用いて転移学習をしてみました。

記事を読む

機械学習の手法のまとめ。

機械学習は、「与えられた入出力事例をモデル化する行為」のことで、ディープラーニングなどで注目を集めて

記事を読む

【Weka】CSVファイルを読み込んで決定木を実行。

フリーの機械学習ソフト Weka を使って、CSVファイルを読み込んで決定木(Decision Tr

記事を読む

【Cubase】イヤホンから音がでないときの対処方法。

Cubase でイヤホンから音がでなくなったときの対処方法のメモです。

【Cubase】特定のトラックを無効にする方法。

今回は、Cubaseで特定のトラックのみを無効にする方法について紹介し

【転移学習】学習済みVGG16 による転移学習を行う方法【PyTorch】

今回は、PyTorch を使って、学習済みのモデル VGG16 を用い

【PyTorch】畳込みニューラルネットワークを構築する方法【CNN】

今回は、PyTorch を使って畳込みニューラルネットワーク(CNN)

【PyTorch】ニューラルネットワークを構築する方法【NN】

今回は、PyTorch を使って、ニューラルネットワーク(NN)を構築

→もっと見る

PAGE TOP ↑