機械学習の手法のまとめ。

機械学習は、「与えられた入出力事例をモデル化する行為」のことで、ディープラーニングなどで注目を集めています。

機械学習には、大きく分けて、

  • 教師あり学習
  • 教師なし学習
  • 強化学習

の3つがあります。

機械学習アルゴリズムをカテゴリ別にまとめたマインドマップを作ってみました。
(正しい保証はありませんが、なんとなくカテゴライズしてみました。)

それぞれの分野について、一覧を示して、勉強した手法からリンクを貼っていきたいと思います。

教師あり学習

教師あり学習とは、それぞれの事例に正解が与えられており、それらを正解に近くなるように学習していく、というものです。

応用分野としては、手書き文字認識やスパムメールの検出などがあります。

教師なし学習

教師なし学習とは、正解は与えられず、データ間の関係を学習する手法のことです。

教師なし学習は、おおまかに分けて、次元削減系クラスタリング系の2つがあるように思います。

  • クラスター分析
  • 主成分分析
  • 自己組織化マップ

強化学習

強化学習とは、「行動に対する報酬」が与えられ、試行錯誤によって良い政策を学習していく手法のことです。

関連記事

【深層学習】 TensorFlow と Keras をインストールする【Python】

今回は、Google Colaboratory 上で、深層学習(DeepLearning)フレームワ

記事を読む

【画像認識】 Google画像検索結果を取得する方法 【google image download】

今回は、深層学習(DeepLearning)で画像認識をするための画像データの収集を、Google画

記事を読む

【機械学習】決定木(decision tree)について。

教師あり学習の一つである決定木(desicion tree)について勉強したことを書いていきます。

記事を読む

【機械学習】モンテカルロ法(Monte Carlo method)について。

モンテカルロ法(Monte Carlo method)とは、シュミレーションや数値計算を乱数を用いて

記事を読む

【機械学習】パーセプトロン(Perceptron)について。

パーセプトロンは、教師あり学習の中でも、入出力モデルベース(eager learning:働き者の学

記事を読む

【機械学習】 scikit-learn で精度・再現率・F値を算出する方法【Python】

今回は、2クラス分類で Python の scikit-learn を使った評価指標である、精度(P

記事を読む

【Weka】欠損データを自動的に補完するフィルタを使ってみた。

機械学習で用いるデータについてです。データは完璧なことに越したことはないが、通常は、ある属性の値が入

記事を読む

【機械学習・手法比較】決定木とナイーブベイズを比較してみた。

同じデータを使って、教師有り機械学習手法の 決定木(Decision Tree)とナイーブベイズ(N

記事を読む

【探索】ダイクストラ法・最良優先探索・Aアルゴリズムの比較。

縦型探索や横型探索では、機械的に順序を付け、最小ステップでゴールを目指します。 つまり、

記事を読む

【Weka】アソシエーション・ルール(association rule)【機械学習】

フリーの機械学習ツール Weka でアソシエーション・ルール(association rule)を使

記事を読む

Message

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

初心者でも分かるビットコインの仕組みについてまとめてみた。

ビットコインは,時価総額が1位で最も有名な仮想通貨です. 仮

【LaTeX】 見出し付き箇条書きを右にずらす方法【数式の変数説明】

今回は、LaTeX で見出し付き箇条書きの全体の位置を右にずらす方法に

【LaTeX】 余白部分を設定しレイアウトを確認する方法。

今回は、LaTeX の余白部分のレイアウトの変更方法とレイアウトの確認

【LaTeX】 レポートや論文の表紙のテンプレート。

LaTex を使ってレポートや論文を書くときに、表紙をつけると思います

【DTM】 Cubase AI でギターやベースを録音する方法。

今回は、DTM のための DAWソフト Cubase AI でギター(

→もっと見る

PAGE TOP ↑