【深層学習】 TensorFlow と Keras をインストールする【Python】

公開日: : 最終更新日:2020/05/21 機械学習 , , , , ,

今回は、Google Colaboratory 上で、深層学習(DeepLearning)フレームワークである TensorFlow と、深層学習フレームワークをバックエンドエンジンとして使う Keras をインストールする方法を紹介します。

Keras とは?

Keras は、複数の深層学習フレームワーク(TensorFlow、Theano、CNTK、など)をバックエンドで使用できる Python のライブラリのことです。

複数の深層学習フレームワーク(TensorFlow、Theano、CNTK、など)を共通の言語で使えるというイメージです。

TensorFlow とは?

TensorFlow は、Google によって開発された機械学習・深層学習フレームワークです。

2020 年現在最も人気のある機械学習・深層学習フレームワークです。

インストール手順

Google Colaboratory 上に Keras と TensorFlow をインストールします。

Google Colaboratory を使う理由は、GPU 環境が無料で使えるからです。

Google Colaboratory については、以前まとめました。

【Google Colaboratory】クラウド上でPythonを使って機械学習を行う。

Python のバージョンは Python 3 を使用します。

TensorFlowのインストール

以下のコマンドを実行します。

Google Colaboratory 環境なので先頭に「!」記号を付けます。


以下のように出力されます。

Requirement already satisfied: tensorflow in /usr/local/lib/python3.6/dist-packages (2.2.0)
Requirement already satisfied: absl-py>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow) (0.9.0)
Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow) (0.3.3)
Requirement already satisfied: h5py<2.11.0,>=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow) (2.10.0)
以下省略

以下のコマンドで TensorFlow のバージョン確認を行います。

バージョン情報が表示されます。

2.2.0

Keras のインストール

以下のコマンドを実行します。

Requirement already satisfied: keras in /usr/local/lib/python3.6/dist-packages (2.3.1)
Requirement already satisfied: numpy>=1.9.1 in /usr/local/lib/python3.6/dist-packages (from keras) (1.18.4)
Requirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from keras) (1.0.8)
Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from keras) (2.10.0)
Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from keras) (1.12.0)
Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python3.6/dist-packages (from keras) (1.4.1)
Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from keras) (1.1.2)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from keras) (3.13)

以下のコマンドで Keras のバージョン確認を行います。


バージョン情報と、バックエンドで TensorFlow が使われていることが確認できます。

2.3.1

Using TensorFlow backend.

関連記事

【機械学習】 scikit-learn で不正解データを抽出する方法【Python】

Python の scikit-learn ライブラリを使って機械学習でテストデータを識別(2クラス

記事を読む

【Weka】フリーの機械学習ソフトをインストールする方法。

Weka は、GUIで使えるフリーの機械学習ソフトです。 https://ja.wikiped

記事を読む

【機械学習】モンテカルロ法(Monte Carlo method)について。

モンテカルロ法(Monte Carlo method)とは、シュミレーションや数値計算を乱数を用いて

記事を読む

【Weka】ARFF 形式から CSV 形式に簡単に変換する方法。

フリーのデータマイニングツールである WEKA では、ARFF 形式と CSV 形式のデータを読み込

記事を読む

【機械学習】 scikit-learn で精度・再現率・F値を算出する方法【Python】

今回は、2クラス分類で Python の scikit-learn を使った評価指標である、精度(P

記事を読む

【Weka】CSVファイルを読み込んで決定木を実行。

フリーの機械学習ソフト Weka を使って、CSVファイルを読み込んで決定木(Decision Tr

記事を読む

【探索】ダイクストラ法・最良優先探索・Aアルゴリズムの比較。

縦型探索や横型探索では、機械的に順序を付け、最小ステップでゴールを目指します。 つまり、

記事を読む

【機械学習】パーセプトロン(Perceptron)について。

パーセプトロンは、教師あり学習の中でも、入出力モデルベース(eager learning:働き者の学

記事を読む

【Weka】欠損データを自動的に補完するフィルタを使ってみた。

機械学習で用いるデータについてです。データは完璧なことに越したことはないが、通常は、ある属性の値が入

記事を読む

【Weka】アソシエーション・ルール(association rule)【機械学習】

フリーの機械学習ツール Weka でアソシエーション・ルール(association rule)を使

記事を読む

【TensorFlow】GPUを認識しない時の対処方法【Python】

TensorFlow で GPU を認識させようとしたときにハマってし

【耳コピ】音楽ファイルを楽器ごとに分離する方法【Spleeter:フリー】

今回は、mp3 などの音楽ファイルをボーカル、ベース、ドラムなどの楽器

【Chainer】手書き数字認識をしてみた【Deep Learning】

Chainerを用いて、ニューラルネットワークを構築し、手書き数字認識

【Spyder】引数のあるスクリプトを実行する方法。

Python の統合開発環境(IDE)である Spyder では、簡単

【Anaconda】Prompt 上で Git コマンドを実行する方法。

Anaconda のコマンドプロンプト(Anaconda Prompt

→もっと見る

PAGE TOP ↑