【Weka】アソシエーション・ルール(association rule)【機械学習】

公開日: : 最終更新日:2018/07/26 機械学習 , , , ,

フリーの機械学習ツール Weka でアソシエーション・ルール(association rule)を使ってみたときのメモです。

アソシエーション・ルール(association rule)とは、事象間の共起性(Co-occurence)を表す規則(rule)を意味します。

有名なのは、大量のスーパーの購入履歴から「ビールとおむつが同時に買われることが多い」というようなルールを探し出すことです。

データの準備

まず、CSV 形式で以下のようなデータを用意しました。

7つの事象の共起性のルールを自動的に見つけていきます。ちなみに、「yes」となっているところが対象事象が観測されたことを意味しています。

データの読み込みは、Weka を起動させ、

前処理 -> ファイルを開く からCSV ファイルを選択します。

最小支持度(minsup)と最小信頼度(minconf)の設定

膨大な数のアソシエーション・ルールから有用なルールと無用なルールの区別を行うための指標が、支持度(support)と信頼度(confidence)になります。

大量のルールから、ある条件を満たすルールのみを有用なルールとみなし抽出します。

その際に用いる、最小支持度(minsup)と最小信頼度(minconf)を Weka で設定します。

アソシエートタブの「選択」ボタンの横のエリアをクリックします。

すると、以下のようなウィンドウが開きます。

最小支持度が「lower BoundMinSupport」で設定でき、最小信頼度が「minMetric」で設定できます。

今回は、最小支持度が 30%、最小信頼度が 75% で設定しました。

実行および結果

開始」ボタンを押すと、ルールの抽出が行われ、右側に結果が表示されます。

結果は以下のようになり、条件を満たす15個のルールが抽出されました。

ちなみに「conf」は信頼度を表しています。

=== 実行情報 ===

スキーマ: weka.associations.Apriori -N 20 -T 0 -C 0.75 -D 0.05 -U 1.0 -M 0.3 -S -1.0 -c -1
関連: association_rule_data
インスタンス: 8
要素: 7
coffee
bread
butter
milk
beer
beans
rice
=== アソシエートモデル (トレーニングセット) ===

 

Apriori
=======

Minimum support: 0.3 (2 instances)
Minimum metric <confidence>: 0.75
Number of cycles performed: 14

Generated sets of large itemsets:

Size of set of large itemsets L(1): 6

Size of set of large itemsets L(2): 6

Size of set of large itemsets L(3): 2

Best rules found:

1. bread=yes 4 ==> butter=yes 4 conf:(1)
2. coffee=yes butter=yes 3 ==> bread=yes 3 conf:(1)
3. coffee=yes bread=yes 3 ==> butter=yes 3 conf:(1)
4. milk=yes 2 ==> bread=yes 2 conf:(1)
5. milk=yes 2 ==> butter=yes 2 conf:(1)
6. beer=yes 2 ==> butter=yes 2 conf:(1)
7. butter=yes milk=yes 2 ==> bread=yes 2 conf:(1)
8. bread=yes milk=yes 2 ==> butter=yes 2 conf:(1)
9. milk=yes 2 ==> bread=yes butter=yes 2 conf:(1)
10. bread=yes 4 ==> coffee=yes 3 conf:(0.75)
11. coffee=yes 4 ==> bread=yes 3 conf:(0.75)
12. coffee=yes 4 ==> butter=yes 3 conf:(0.75)
13. bread=yes butter=yes 4 ==> coffee=yes 3 conf:(0.75)
14. bread=yes 4 ==> coffee=yes butter=yes 3 conf:(0.75)
15. coffee=yes 4 ==> bread=yes butter=yes 3 conf:(0.75)

関連記事

【深層学習】 TensorFlow と Keras をインストールする【Python】

今回は、Google Colaboratory 上で、深層学習(DeepLearning)フレームワ

記事を読む

【Weka】CSVファイルを読み込んで決定木を実行。

フリーの機械学習ソフト Weka を使って、CSVファイルを読み込んで決定木(Decision Tr

記事を読む

【探索】縦型・横型・反復深化法の探索手法の比較。

探索とは、チェスや将棋や囲碁などのゲームをコンピュータがプレイするときに、どの手を指すかを決定するの

記事を読む

【機械学習】パーセプトロン(Perceptron)について。

パーセプトロンは、教師あり学習の中でも、入出力モデルベース(eager learning:働き者の学

記事を読む

【機械学習】 scikit-learn で不正解データを抽出する方法【Python】

Python の scikit-learn ライブラリを使って機械学習でテストデータを識別(2クラス

記事を読む

【機械学習】 scikit-learn で精度・再現率・F値を算出する方法【Python】

今回は、2クラス分類で Python の scikit-learn を使った評価指標である、精度(P

記事を読む

【機械学習】決定木(decision tree)について。

教師あり学習の一つである決定木(desicion tree)について勉強したことを書いていきます。

記事を読む

【機械学習・手法比較】決定木とナイーブベイズを比較してみた。

同じデータを使って、教師有り機械学習手法の 決定木(Decision Tree)とナイーブベイズ(N

記事を読む

【Weka】欠損データを自動的に補完するフィルタを使ってみた。

機械学習で用いるデータについてです。データは完璧なことに越したことはないが、通常は、ある属性の値が入

記事を読む

【機械学習】モンテカルロ法(Monte Carlo method)について。

モンテカルロ法(Monte Carlo method)とは、シュミレーションや数値計算を乱数を用いて

記事を読む

【matplotlib】 Python でヒストグラムの横軸と棒(ビン)の数を調整する方法。

Python の matplotlib を使ってヒストグラムを描画し、

【デジカメ】 NEX-6 で撮った写真を Wi-Fi で PC に転送する方法【SONY】

今回は、SONY の NEX-6 のデジカメで撮った写真を 無線の W

【SONY NEX-6】オールドレンズをミラーレスカメラに付ける方法【マウントアダプター】

家でずっと眠っていたオールドレンズ(フィルムカメラに装着されて

【WordPress】 カテゴリごとに広告を簡単に切り替える方法【AdRotate】

今回は、WordPress のプラグインを使って、簡単にカテゴリごとに

【ビットコイン】 アドレス生成方法について調べてみた。

仮想通貨の1つであるビットコインを送金するときは、送付側と受け手側のそ

→もっと見る

PAGE TOP ↑