【PyTorch】GPUのメモリ不足でエラーになったときの対処方法。
PyTorch で深層学習していて、 GPUのメモリ不足でエラーが出てしまったので、対処方法のメモです。
エラーの内容は以下のような感じで「CUDA out of memory」となっています。
RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 6.00 GiB total capacity;
4.55 GiB already allocated; 0 bytes free; 4.59 GiB reserved in total by PyTorch)
これは、GPU のメモリが解放できていないために起きているエラーのようです。
GPUメモリの解放は、コマンドプロンプトで行います。
コマンドプロンプトを立ち上げて、以下のコマンドで GPUメモリ情報を表示させます。
|
1 |
> nvidia-smi |

赤枠部分で、python.exe のプロセスが残っているために、メモリが解放されていないことが分かります。

以下のコマンドで、python.exe のプロセスをキルします。
|
1 |
> taskkill /pid プロセスID /f |
再度「nvidia-smi」コマンドでメモリが解放されていることが確認できます。
関連記事
-
-
【機械学習】決定木(decision tree)について。
教師あり学習の一つである決定木(desicion tree)について勉強したことを書いていきます。
-
-
【TensorFlow】GPUを認識しない時の対処方法【Python】
TensorFlow で GPU を認識させようとしたときにハマってしまったので、その対処方法のメモ
-
-
【機械学習】パーセプトロン(Perceptron)について。
パーセプトロンは、教師あり学習の中でも、入出力モデルベース(eager learning:働き者の学
-
-
【探索】縦型・横型・反復深化法の探索手法の比較。
探索とは、チェスや将棋や囲碁などのゲームをコンピュータがプレイするときに、どの手を指すかを決定するの
-
-
【Chainer】手書き数字認識をしてみた【Deep Learning】
Chainerを用いて、ニューラルネットワークを構築し、手書き数字認識を行ったときのメモです。
-
-
【機械学習・手法比較】決定木とナイーブベイズを比較してみた。
同じデータを使って、教師有り機械学習手法の 決定木(Decision Tree)とナイーブベイズ(N
-
-
【探索】ダイクストラ法・最良優先探索・Aアルゴリズムの比較。
縦型探索や横型探索では、機械的に順序を付け、最小ステップでゴールを目指します。 つまり、
-
-
【転移学習】学習済みVGG16 による転移学習を行う方法【PyTorch】
今回は、PyTorch を使って、学習済みのモデル VGG16 を用いて転移学習をしてみました。
-
-
【Weka】欠損データを自動的に補完するフィルタを使ってみた。
機械学習で用いるデータについてです。データは完璧なことに越したことはないが、通常は、ある属性の値が入
-
-
【Weka】ARFF 形式から CSV 形式に簡単に変換する方法。
フリーのデータマイニングツールである WEKA では、ARFF 形式と CSV 形式のデータを読み込



















